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In the present work, we study the wake velocity "eld of an elastically mounted rigid cylinder
oscillating transverse to a #uid #ow, using DPIV measurements. It is shown that there are large
qualitative changes in these velocity "elds, depending on the mode of cylinder oscillation. In
particular, the characteristic &&recirculation bubble'', usually seen in the mean velocity "eld
behind the nonoscillating cylinder, is found to be present in the case of the &2S' wake formation
mode, yet is completely absent for the &2P' mode. For the &2P' mode, we "nd instead the
appearance of a pair of counter-rotating vortices of opposite sign to what is expected, causing
a downstream-oriented jet-type #ow close to the cylinder, which in turn results in a &double-
wake' type velocity pro"le. Measurements of both the total Reynolds stresses, and the periodic
stresses evaluated using phase-averaged velocity data, show that more than 90% of the total
stresses are due to the repeatable large-scale coherent structures in the wake, when the body is
vibrating. Periodic stresses make up only about 60% of the total stresses, in the case of the
stationary body. Interestingly, for the "xed body, the periodic stresses remain relatively
unchanged between our experiments (Re"3900) and those of Cantwell & Coles, at
Re"140 000, although the total stresses are signi"cantly increased at the larger Re. Our
experimental evaluation of Reynolds stress is stimulated by the need for such data in developing
turbulence modelling of these #ows, as well as to enable detailed comparison with direct
numerical simulations. ( 2001 Academic Press
1. INTRODUCTION

THE PROBLEM OF VORTEX-INDUCED VIBRATION OF A CYLINDER, in particular the case where
a rigid circular cylinder is elastically mounted and constrained to oscillate transversely to
a free stream, has been well-studied in the literature, as may be seen from the comprehensive
reviews of Sarpkaya (1979), Bearman (1984) and Parkinson (1989). However, apart from the
early work of Gri$n (1971) where selected wake velocity pro"les were measured at low
Re+200, from forced transverse oscillations of the cylinder, there have been no detailed
investigations of the mean and #uctuating wake velocity "elds for such a transversely
oscillating cylinder. It should be mentioned here that the motivation for the present study of
the wake velocity "eld, over a range of Reynolds numbers, Re"3000}4000, comes from
Stansby & Apsley (2000) and from Peter Stansby, Julio Meneghini and Hugh Blackburn
(private communications), who are using turbulence modelling to predict the behaviour of
an elastically mounted cylinder at high Re, and for which detailed experimental measure-
ments of the velocity "eld are useful to validate the modelling procedure.

The amplitude response (A*"A/D"amplitude/diameter) of such an elastically moun-
ted cylinder shows two distinctly di!erent types of behaviours, depending on whether one
has a high or low combined mass-damping parameter (m*f), as shown in Khalak & Will-
iamson (1999) and Govardhan & Williamson (2000). [The mass ratio, m*"(mass of
0889}9746/01/040489#13 $35.00/0 ( 2001 Academic Press



Figure 1. Amplitude response (A*"A/D) of the elastically mounted cylinder as a function of #ow
speed. In the classical high-(m*f) case, only 2 response branches (&Initial'& &Lower') are seen, whereas
in the low-(m*f) case, a further higher amplitude &Upper' branch of response is also observed. The #ow
speed parameter (;*/f*)S " (f

vo
/f), where f

vo
is the stationary body shedding frequency, and f is the

actual cylinder oscillation frequency. Mass-damping values for the two response plots shown
are (m*#C

A
)f"0)251 (High) and (m*#C

A
)f"0)013 (Low), while the corresponding mass ratios

are m*"320 and m*"8)63, respectively. d, Present response data; (, location where the wake
velocity "eld is measured.
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oscillating structure)/(displaced mass of #uid); and the damping ratio f"structural damp-
ing/critical damping.] In the classical high-(m*f) case, an &Initial' and &Lower' amplitude
branch are separated by a discontinuous mode transition. However, in the case of low-
(m*f), a further higher amplitude &Upper' branch of response appears, and there exist three
response branches, as shown in Figure 1. There are therefore two mode transitions in this
case. The existence of, not one, but two mode transitions at low-(m*f), and their relationship
with the forces and wake vortex dynamics, is studied in detail by simultaneous force,
displacement and vorticity measurements for a freely vibrating cylinder in Govardhan
& Williamson (2000). The present study of the wake velocity "elds is related to work
reported there.

Vorticity contours corresponding to the di!erent response branches at low-(m*f) shown
in Figure 2, indicate that the Initial branch is associated with the 2S wake mode, while both
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the Upper and Lower branches correspond to the 2P-mode; &2S' indicating 2 Single vortices
formed per cycle, and &2P' meaning 2 Pairs of vortices formed per cycle, as de"ned by
Williamson & Roshko (1988) based on their forced oscillation experiments. As may be seen
from Figure 2, the strengths of the two vortices of each vortex pair are quite unequal in the
Upper branch, but are roughly equal in the Lower branch. In the case of forced vibration,
the 2S and 2P modes have also been shown using PIV by Carberry et al. (2001) for the
forced transverse vibration of a circular cylinder, and these modes are also observed from
forced oscillations of a tapered cylinder by Techet et al. (1998). At high values of the mass
ratio, #ow visualization of the wake of a freely vibrating wire also indicated a 2S and 2P
mode, as shown by Brika & Laneville (1993).

In the present work, we study the mean and #uctuating velocity "elds in the wake of
a freely oscillating circular cylinder, at Re"3000}4000, corresponding to each of the three
response branches at low-(m*f), namely the Initial, Upper and Lower branches. For
comparison, a stationary cylinder case at approximately similar Reynolds numbers
(Re"3900) is also studied.

2. EXPERIMENTAL DETAILS

The present experiments were conducted using a hydroelastic facility, which is described in
Khalak & Williamson (1999), in conjunction with the Cornell-ONR Water Channel. The
hydroelastic facility comprises a carriage mounted on air-bearings situated above
the channel test section, which allow a vertical cylinder in the #uid to move transverse to the
free-stream. The turbulence level in the test section of the Water Channel was less than
0)9%, in the 0)381 m]0)508 m cross section, over the range of free-stream velocities
; (0)04}0)32 m s~1) used in this study. The test cylinder had a diameter of 0)0381 m, and
a length}diameter ratio of 10.

For the purpose of employing DPIV, the #ow was seeded with 14 lm silver-coated glass
spheres, which were illuminated by a sheet of laser light from a 5 W continuous Argon ion
laser. Images of the particles were captured using a high-resolution CCD Kodak Megaplus
(1008]1018 pixels) camera. Pairs of particle images were analysed using cross-correlation
of sub-images, our implementation of which is described in more detail in Govardhan
& Williamson (2000), and resulted in a set of 3600 vectors (60]60) for a typical velocity
"eld. Each of the mean and #uctuating velocity "elds shown in the paper have been
obtained from about 300 such DPIV velocity "elds.

The origin of the co-ordinate system is "xed at the centre of the cylinder, at zero
#ow speed. The x-axis is downstream, the y-axis is perpendicular to the #ow direction
and to the cylinder axis (de"ned as transverse), and the z-axis lies along the axis of
the cylinder. The velocity components along the Mx, y, zN axes are denoted as
Mu, v, wN, respectively, and the freestream velocity is denoted as ;. The Reynolds num-
ber, normalized velocity (;*";/f

N
D), and oscillation amplitude (A*"A/D) corres-

ponding to each of the three cylinder response modes studied are: Initial (Re+3000,
;*"5)18, A*"0)33); Upper (Re+3100, ;*"5)33, A*"0)81); Lower (Re+3700,
;*"6)40, A*"0)60).

3. MEAN VELOCITY FIELDS

Although the mean velocity "eld in the wake of a stationary cylinder has been extensively
studied, relatively little is known about the velocity "eld in the wake of a transversely
oscillating cylinder. The only detailed investigation of the velocity "eld (in the form of a set
of velocity pro"les) to our knowledge, was conducted by Gri$n (1971), for the forced
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Figure 3. Streamlines for the mean velocity "eld indicating the disappearance of the &&recirculation
bubble'' in the Upper and Lower branches which correspond to the 2P-mode. Re"3900 for the

stationary cylinder case shown here and in later "gures.
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vibration of a cylinder at low Re+200. He found that the formation length, de"ned as the
location along the wake centreline where velocity #uctuations reach a maximum, reduced
to half the value found for a stationary cylinder. It is expected that a similar reduction in size
of the mean &&recirculation bubble'' will ensue when a body vibrates. At higher Re as in the
present study (Re"3000}4000), one might expect large deviations in the mean velocity
"eld for the 2P-mode as compared with the wake of the 2S-mode, where the vortices are
arranged as in a KaH rmaH n vortex street.

The streamlines for the mean velocity "eld corresponding to the Initial branch (2S-mode)
in Figure 3, show the presence of a &&recirculation bubble'', as in the stationary cylinder case.
The e!ect of body vibration, for the 2S-mode, is to markedly shorten the bubble, which is
consistent with the reduced &&formation length'' for an oscillating body found by Gri$n
(1971). Interestingly, this &&recirculation bubble'' disappears for the Upper and Lower
response branches that are associated with the 2P-mode, as may be seen in Figure 3.

The mean vorticity "eld, shown in Figure 4, for the Lower branch (2P-mode) shows the
presence of a pair of counter-rotating vortices of opposite sign to what one might expect in
a wake, in contrast to the Initial branch (2S-mode) case. The jet #ow induced by this vortex



Figure 5. Streamwise velocity pro"les at x/D"1)25. In the Lower branch (2P-mode), the velocity
pro"le takes on the appearance of a &double-wake' pro"le, due to the jet #ow induced by the presence

of counter-rotating vortices of opposite sign to what is expected in the wake.
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pair, gives the streamwise mean velocity pro"le a &double-wake' type appearance, as may be
seen in Figure 5. It should be mentioned here that this type of &double-wake' pro"le was
observed by Koochesfahani (1989) for a mode of vortex formation downstream of a pitching
airfoil, which is equivalent to the present 2P-mode. In the Upper branch (unequal 2P-mode)
case, the mean vortex pair is again present in the mean vorticity "eld, although in this case it is
rather weaker than for the Lower branch case, hence the &double-wake' pro"le is only just
discernible. The mean vortex pair, in the case of the 2P-modes found here, may be interpreted
as due to vorticity being drawn across the wake, to form the second vortex in each pair of the
2P-mode. It has a sign of vorticity opposite to the classical wake vorticity. The detailed
formation of the 2P-mode is described further in Govardhan & Williamson (2000).

4. FLUCTUATING VELOCITY FIELDS

We present, in this section, global mean Reynolds stresses in the wake, for the stationary
cylinder as well as for the oscillating cylinder in each of the three branches of response,
namely the Initial, Upper and Lower branches. In each case, the total Reynolds stress,
computed from a large number of instantaneous DPIV velocity "elds, as well as the periodic
component of the Reynolds stress, calculated from phase-averaged velocity data as in
Cantwell & Coles (1983), is shown. In the present work, the phase averaging of the velocity
data is performed using the lift force signal as the reference, for the stationary cylinder, and
using the cylinder displacement signal as a reference, for the oscillating cylinder cases. The
set of instantaneous velocity "elds obtained are divided into 30 di!erent sub-groups, each
sub-group corresponding to a certain phase of cylinder motion (or lift force), and the
velocity "elds within each sub-group are averaged. The periodic Reynolds stress is cal-
culated from the resulting 30 phase-averaged velocity "elds.

As discussed by Cantwell & Coles (1983), based on Reynolds & Hussain (1972), a #ow
variable s(t) in the near wake can be viewed formally as a combination of a global mean
component sN , a periodic mean component sJ (which depends on the phase h during a cycle),
and a random component s@(t). By de"nition, the total variable s(t) is then the sum

s(t)"sN#sJ (h)#s@(t). (1)



Figure 4. Mean vorticity "elds showing the presence behind the cylinder of a pair of counter-
rotating vortices of opposite sign to what is expected in a wake, for the Upper and Lower response
branches, which correspond to the 2P-mode. Vorticity contours levels shown are uD/;"$0)4,
$0)8, $1)22 (for stationary cylinder and Initial branch), and uD/;"$0)2, $0)4, $0)82 (for

the Upper and Lower branches).



TABLE 1
Peak Reynolds stress in the wake of a stationary circular cylinder

(a) Total Reynolds stress (uAuA/;2) (vAvA/;2) (uAvA/;2)

Cantwell & Coles (1983) Re"140 000 0)22 0)43 0)12
Present Re"3900 0)11 0)23 0)085

(b) Periodic part of Reynolds stress (u8 u8 /;2) (v8 v8 /;2) (u8 v8 /;2)

Cantwell & Coles (1983) Re"140 000 0)08 0)23 0)05
Present Re"3900 0)065 0)18 0)06
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The global mean sN , may be obtained by averaging over all the instantaneous velocity "elds.
On the other hand, in order to obtain the periodic mean s8 (h), we need to average the data at
constant phase of vortex shedding (h), as in Cantwell & Coles (1983). Following the notation
used in Cantwell & Coles (1983), the periodic component (sJ ) may then be de"ned as

sJ (h)"SsTh!sN , (2)

where SsTh is the mean of s at a particular phase h. In the present work, we also introduce
the additional notation, sA(t), as the total #uctuation, de"ned by

sA(t)"s(t)!sN"sJ (h)#s@(t). (3)

If s(t) is the streamwise velocity component u(t), then the total streamwise Reynolds normal

stress (uAuA) would have two components; the periodic component u8 uJ , due to the repeatable

large-scale coherent structures in the wake, and the random component u@u@, due to the
random small-scale turbulence, as discussed in Cantwell & Coles (1983) and shown below:

uAuA"u8 u8 #u@u@

Total"Periodic#Random

The peak value of the total streamwise Reynolds stress for the stationary cylinder, at our

Re+3900, is about (uAuA/;2)+0)11, as may be seen from Figure 6. As one might expect,

this value is substantially smaller than the peak value of (uAuA/;2)+0)22 found in the much
higher Re (Re"140 000) experiments of Cantwell & Coles (1983). However, if instead we
now compare the peak periodic stress, we "nd interestingly that their values are quite
similar, 0)065 and 0)08, respectively. In fact, comparison of the peak values of each of the
other Reynolds stresses between the two widely di!erent Reynolds numbers, also shown in
Table 1, indicates that in each case, the peak periodic components are very nearly the same,
although the peak total Reynolds stress is signi"cantly larger for the higher Re experiments.
This suggests that the repeatable large-scale coherent structures, responsible for the peri-
odic part of the Reynolds stresses, are quite similar over the range of Re from 3900 to
140000. Therefore, the increase in Reynolds stresses over this range of Re seems to be
principally due to the random component. We suggest that this is fed by the increasing
strength of the Kelvin}Helmholtz instability of the separating shear layer, as Re increases in
this &&Shear Layer instability regime'', de"ned in the review of Williamson (1996), and "rst
studied by Schiller & Linke (1933); see also Roshko's (1993) review.

For the stationary cylinder case, at our Re"3900, the maximum total stress (uAuA/;2) is
about 0)11, while the periodic stress (u8 u8 /;2)+0)065, indicating that in this case the periodic
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TABLE 2
Peak periodic Reynolds stress (s8 s8 ) as a percentage of peak total Reynolds stress (sAsA)

Stationary (%) Initial (%) Upper (%) Lower (%)

(u8 u8 /uAuA) 59 89 96 95
(v8 v8 /vAvA) 78 93 93 90
(u8 v8 /uAvA) 71 55 93 96

TABLE 3
Vortex formation length (l

f
)

Stationary Initial Upper Lower

(l
f
/D)

#-0463% 10*/5
2)27 1)46 * *

(l
f
/D)

-0#!5*0/ 0& .!9 uAuA
2)33 0)55 0)64 0)68
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part is approximately 60% of the total Reynolds stress. In Table 2, we present percentages
for the ratios of periodic to total stress, for the three di!erent Reynolds stresses, and
corresponding to each of the three cylinder response branches as well as for the stationary
cylinder (see Figures 6}8). A striking feature of Table 2, is the increase in percentages for the
oscillating cylinder cases, to about 90% or greater, in contrast to the approximately 70%
level for the stationary cylinder. This would indicate that for the oscillating cylinder, nearly
all the total Reynolds stress comes from the large-scale periodic dynamics of the #ow. The
above point, combined with the fact that these large-scale periodic coherent structures seem
to be relatively independent of Re, as noted previously in comparison to Cantwell & Coles
(1983), would indicate that the Reynolds stresses measured in the present work, for the
oscillating cylinder at Re"3000}4000, would be quite representative also of much higher
Reynolds numbers; a point that could be useful in modelling these problems. [It may be
noted in Table 2, that unlike all the other cases, the percentage of the periodic shearing
stress (u8 v8 /;2) in the Initial branch, is quite small, about 55% of the total shearing stress. The
reason for the low value in this particular case is not known at present.]

The numerical values of the peak periodic stress, and indeed the peak total stress, can be
considerably larger for an oscillating cylinder, compared to the stationary cylinder, as may
be seen from Figures 6}8. In particular, the largest increase in periodic stress appears to be
for the Lower branch of cylinder response, which corresponds to the 2P-mode, where
(u8 u8 /;2)

.!9
increases by 485%, (v8 v8 /;2)

.!9
increases by 100%, and (u8 v8 /;2)

.!9
increases by

125%, compared to the stationary cylinder values, which seem to be relatively independent
of Re. This large increase in the periodic Reynolds stresses in the Lower branch is consistent
with the large increase (of about 200%) in the total circulation that is shed into the
large-scale vortices, as discussed in Govardhan & Williamson (2000). The increased vortex
circulation corresponds with the large increase in #uctuating lift (by a factor of 6), and in
mean drag (by a factor of 5), as shown in Khalak & Williamson (1997).

We shall now brie#y look at the &&formation length'' for the oscillating cylinder. Contour
plots of the total streamwise Reynolds stress (uAuA) in the wake, shown in Figure 6, indicate
that the location of the maximum value of uAuA gets closer to the cylinder when it vibrates,
compared to the stationary cylinder, consistent with the observations of Gri$n (1971), and
with our earlier observation of a reduction in the size of the recirculation bubble. The
formation length (l

f
) has been de"ned in many ways as discussed recently by Noca et al.
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(1998) and by Norberg (1998). In Table 3, we show values of l
f

calculated from the &closure

point' (uN /;"0 on wake centreline), and from the streamwise location of maximum uAuA in
the wake; in each case l

f
is measured from the cylinder axis. It can be seen that l

f
(computed

in either of the two ways) is considerably reduced for the oscillating cylinder compared to
the stationary cylinder. However, at the present Re"3000}4000, the reduction in l

f
is

substantially greater than that observed by Gri$n at Re+200. In fact, it is interesting to
note that one cannot de"ne l

f
based on the closure point for the Upper and Lower

branches, as there is no recirculation bubble in these cases. The formation length can

however still be calculated based on the streamwise location of maximum uAuA in the wake,
which gives values of l

f
/D+0)6, which is substantially lower than the smallest values of

l
f
/D+1)6 reported by Gri$n at Re+200.

5. CONCLUSIONS

In this work, we study the wake velocity "eld of an elastically mounted rigid cylinder that is
constrained to move transverse to the free stream, using DPIV measurements.

The measured mean velocity "elds indicate that the characteristic &&recirculation bubble'',
usually seen in the mean velocity "eld behind the nonoscillating cylinder, is present in the
case of the &2S'wake formation mode, but is completely absent for the 2P-mode. For the &2P'
mode, we "nd instead the appearance of a pair of counterrotating vortices of opposite sign
to what is expected, causing a downstream oriented jet-type #ow close to the cylinder, which
in turn results in a &double-wake' type velocity pro"le.

We evaluate the total Reynolds stresses, and the periodic component of stress, computed
from phase-averaged velocity data, for the stationary cylinder as well as for the oscillating
cylinder in each of the three response branches, namely the Initial, Upper and Lower
branches. Comparison of the stationary cylinder peak stresses, at Re"3900, with the data
of Cantwell & Coles (1983), at much higher Re (Re"140 000), indicate that although the
total Reynolds stresses are signi"cantly larger at the higher Reynolds numbers, the periodic
component of stress is quite similar in both cases. This suggests that the repeatable
large-scale coherent structures, responsible for the periodic part of the Reynolds stresses,
are quite similar over the wide range of Re from 3900 to 140 000. In the case of the
oscillating cylinder, typically more than 90% of the total Reynolds stresses are due to
these repeatable large-scale coherent structures. The above facts suggest that the Reynolds
stresses obtained in the present work, at Re+3900 for the oscillating cylinder, would be
quite representative also of much higher Re cases; a point that could be useful in modelling
these problems.

Reynolds stresses at di!erent constant phases of vortex shedding, corresponding to each
of the three cylinder response modes, have also been computed, but are not included in this
paper, for brevity.
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